103 research outputs found

    Photothermal Polymer Nanocomposites of Tungsten Bronze Nanorods with Enhanced Tensile Elongation at Low Filler Contents

    Get PDF
    We present polymer nanocomposites of tungsten bronze nanorods (TBNRs) and ethylene propylene diene monomers (EPDM). The combination of these components allows the simultaneous enhancement in the mechanical and photothermal properties of the composites at low filler contents. The as-synthesized TBNRs had lengths and diameters of 14.0 +/- 2.4 nm and 2.5 +/- 0.5 nm, respectively, and were capped with oleylamine, which has a chemical structure similar to EPDM, making the TBNRs compatible with the bulk EPDM matrix. The TBNRs absorb a wide range of near-infrared light because of the sub-band transitions induced by alkali metal doping. Thus, the nanocomposites of TBNRs in EPDM showed enhanced photothermal properties owing to the light absorption and subsequent heat emission by the TBNRs. Noticeably, the nanocomposite with only 3 wt% TBNRs presented significantly enhanced tensile strain at break, in comparison with those of pristine EPDM, nanocomposites with 1 and 2 wt % TBNRs, and those with tungsten bronze nanoparticles, because of the alignment of the nanorods during tensile elongation. The photothermal and mechanical properties of these nanocomposites make them promising materials for various applications such as in fibers, foams, clothes with cold weather resistance, patches or mask-like films for efficient transdermal delivery upon heat generation, and photoresponsive surfaces for droplet transport by the thermocapillary effect in microfluidic devices and microengines

    The Grind for Good Data: Understanding ML Practitioners' Struggles and Aspirations in Making Good Data

    Full text link
    We thought data to be simply given, but reality tells otherwise; it is costly, situation-dependent, and muddled with dilemmas, constantly requiring human intervention. The ML community's focus on quality data is increasing in the same vein, as good data is vital for successful ML systems. Nonetheless, few works have investigated the dataset builders and the specifics of what they do and struggle to make good data. In this study, through semi-structured interviews with 19 ML experts, we present what humans actually do and consider in each step of the data construction pipeline. We further organize their struggles under three themes: 1) trade-offs from real-world constraints; 2) harmonizing assorted data workers for consistency; 3) the necessity of human intuition and tacit knowledge for processing data. Finally, we discuss why such struggles are inevitable for good data and what practitioners aspire, toward providing systematic support for data works

    miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition

    Get PDF
    Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases

    Mst1-FoxO Signaling Protects Naïve T Lymphocytes from Cellular Oxidative Stress in Mice

    Get PDF
    Background: The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. InC. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood. Methodology/Principal Findings: Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1 2/2 mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1 2/2 T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1 2/2 T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1 2/2 mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1 2/2 progeny. Interestingly, peripheral T cells from Mst1 2/2 mice were hypersensitive to c-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant. Conclusions/Significance: These data support the hypothesis that tolerance to increased levels of intracellular RO

    Glutathione Suppresses Cerebral Infarct Volume and Cell Death after Ischemic Injury: Involvement of FOXO3 Inactivation and Bcl2 Expression

    Get PDF
    Ischemic stroke interrupts the flow of blood to the brain and subsequently results in cerebral infarction and neuronal cell death, leading to severe pathophysiology. Glutathione (GSH) is an antioxidant with cellular protective functions, including reactive oxygen species (ROS) scavenging in the brain. In addition, GSH is involved in various cellular survival pathways in response to oxidative stress. In the present study, we examined whether GSH reduces cerebral infarct size after middle cerebral artery occlusion in vivo and the signaling mechanisms involved in the promotion of cell survival after GSH treatment under ischemia/reperfusion conditions in vitro. To determine whether GSH reduces the extent of cerebral infarction, cell death after ischemia, and reperfusion injury, we measured infarct size in ischemic brain tissue and the expression of claudin-5 associated with brain infarct formation. We also examined activation of the PI3K/Akt pathway, inactivation of FOXO3, and expression of Bcl2 to assess the role of GSH in promoting cell survival in response to ischemic injury. Based on our results, we suggest that GSH might improve the pathogenesis of ischemic stroke by attenuating cerebral infarction and cell death

    Phosphorylation of Histone H2A.X in Peripheral Blood Mononuclear Cells May Be a Useful Marker for Monitoring Cardiometabolic Risk in Nondiabetic Individuals

    Get PDF
    Phosphorylation of H2A.X (serine 139) in the histone H2A family located in the downstream of the DNA damage kinase signaling cascade is an important indicator of DNA damage. Recently, phosphorylation of H2A.X was proposed as a sensitive biomarker of aging. This study investigated if phosphorylation of H2A.X in peripheral blood mononuclear cells (PBMCs) is associated with cardiometabolic risk in nondiabetic individuals. Basic parameters and oxidative stress/inflammatory markers were measured in nondiabetic healthy Koreans (n = 119). Phosphorylation of H2A.X was measured randomly among the study subjects using a flow cytometer. According to the number of metabolic syndrome risk factor (MetS-RF), the study subjects were subdivided into "super healthy" (MetS − RF = 0, n = 71) and "MetS-risk" (MetS − RF ≥ 1, n = 48) groups. Phosphorylation of H2A.X in PBMCs (percentages and mean fluorescence intensity) was significantly higher in the MetS-risk group than in the super healthy group after adjusting for age, sex, cigarette smoking, and alcohol consumption. Phosphorylated H2A.X was positively correlated with the number of MetS-RF as well as waist circumference, blood pressures, triglyceride, Hb A1C , oxidized LDL, high sensitivity C-reactive protein, tumor necrosis factor-alpha, and alanine aminotransferase after the adjustment. The present study suggested that phosphorylated H2A.X in circulating PBMCs measured by flow cytometer may be a useful marker for monitoring cardiometabolic risk in nondiabetic individuals
    corecore